
R Programming Cheat Sheet
advanced

Created By: Arianne Colton and Sean Chen

Environments

Access any
environment
on the
search list

as.environment('package:base')

Find the
environment
where a
name is
defined

pryr::where('func1')

Function environments

There are 4 environments for functions.

1.	 Enclosing environment (used for lexical
scoping)
•	 When a function is created, it gains a reference

to the environment where it was made. This is the
enclosing environment.

•	 The enclosing environment belongs to the function,
and never changes, even if the function is moved
to a different environment.

•	 Every function has one and only one enclosing
environment. For the three other types of
environment, there may be 0, 1, or many
environments associated with each function.

•	 You can determine the enclosing environment of a
function by calling i.e. environment(func1)

2.	 Binding environment
•	 The binding environments of a function are all the

environments which have a binding to it.
•	 The enclosing environment determines how the

function finds values; the binding environments
determine how we find the function.

Example for enclosing and binding environment
y <- 1

e <- new.env()

e$g <- function(x) x + y

function g enclosing environment is the global
environment, and the binding environment is “e”.

Figure 2. Function Environment

Environments

Note: Every R package has two environments
associated with it (package and namespace).
Every exported function is bound into the package
environment, but enclosed by the namespace
environment.

3.	 Execution environment
•	 Each time a function is called, a new environment

is created to host execution. The parent of the
execution environment is the enclosing environment
of the function.

•	 Once the function has completed, this environment
is thrown away.

Note: Each execution environment has two
parents: a calling environment and an enclosing
environment.

•	 R’s regular scoping rules only use the enclosing
parent; parent.frame() allows you to access the
calling parent.

4.	 Calling environment
•	 This is the environment where the function was

called.
•	 Looking up variables in the calling environment

rather than in the enclosing environment is called
dynamic scoping.

•	 Dynamic scoping is primarily useful for developing
functions that aid interactive data analysis.

Binding names to values
Assignment
•	 Assignment is the act of binding (or rebinding) a

name to a value in an environment.
Name rules
•	 A complete list of reserved words can be found in

?Reserved.
Regular assignment arrow, <-
•	 The regular assignment arrow always creates a

variable in the current environment.
Deep assignment arrow, <<-
•	 The deep assignment arrow modifies an

existing variable found by walking up the parent
environments. If <<- doesn’t find an existing variable,
it will create one in the global environment. This
is usually undesirable, because global variables
introduce non-obvious dependencies between
functions.

Environment Creation
•	 To create an environment manually, use new.env().

You can list the bindings in the environment’s frame
with ls() and see its parent with parent.env().

•	 When creating your own environment, note that you
should set its parent environment to be the empty
environment. This ensures you don’t accidentally
inherit objects from somewhere else.

Search Path
What is the Search Path?
An R internal mechansim to look up objects, specifically,
functions.
•	 Access with search(), which lists all parents of the

global environment. (See Figure 1)
•	 It contains one environment for each attached

package.
•	 Objects in the search path environments can be

found from the top-level interactive workspace.

Figure 1. The Search Path

•	 If you look for a name in a search, it will always start
from global environment first, then inside the latest
attached package.

If there are functions with the same name in two
different packages, the latest package will get called.

•	 Each time you load a new package with library()/
require() it is inserted between the global
environment and the package that was previously at
the top of the search path.

search() :

'.GlobalEnv' ... 'Autoloads' 'package:base'

library(reshape2); search()

'.GlobalEnv' 'package:reshape2' ...
'Autoloads' 'package:base'

Note: There is a special environment called Autoloads
which is used to save memory by only loading package
objects (like big datasets) when needed.

Environment Basics
What is an Environment?
Data structure (that powers lexical scoping) is made up
of two components, the frame, which contains the name-
object bindings (and behaves much like a named list),
and the parent environment.

Named List
•	 You can think of an environment as a bag of names.

Each name points to an object stored elsewhere in
memory.

•	 If an object has no names pointing to it, it gets
automatically deleted by the garbage collector.

Parent Environment

•	 Every environment has a parent, another
environment. Only one environment doesn’t have a
parent: the empty environment.

•	 The parent is used to implement lexical scoping: if
a name is not found in an environment, then R will
look in its parent (and so on).

Environments can also be useful data structures in their
own right because they have reference semantics.

Four special environments
1.	 Global environment, access with globalenv(),

is the interactive workspace. This is the environment
in which you normally work.

The parent of the global environment is the last
package that you attached with library() or
require().

2.	 Base environment, access with baseenv(), is
the environment of the base package. Its parent is the
empty environment.

3.	 Empty environment, access with emptyenv(),
is the ultimate ancestor of all environments, and
the only environment without a parent. Empty
environments contain nothing.

4.	 Current environment, access with
environment()

Data Structures

Functions

 Homogeneous Heterogeneous

 1d Atomic vector List

 2d Matrix Data frame

 nd Array

Note: R has no 0-dimensional or scalar types. Individual
numbers or strings, are actually vectors of length one,
NOT scalars.

Human readable description of any R data structure:

str(variable)

Every Object has a mode and a class
1.	 Mode: represents how an object is stored in memory;
•	 ‘type’ of the object from R’s point of view
•	 Access with typeof()

Function Basics
The most important thing to understand about R is that
functions are objects in their own right.
All R functions have three parts:

body() code inside the function

formals() list of arguments which controls how you
can call the function

environment() “map” of the location of the function’s
variables (see “Enclosing Environment”)

•	 When you print(func1) a function in R, it shows
you these three important components. If the
environment isn't displayed, it means that the function
was created in the global environment.

•	 Like all objects in R, functions can also possess any
number of additional attributes().

Every operation is a function call
•	 Everything that exists is an object
•	 Everything that happens in R is a function call, even if

it doesn’t look like it. (i.e. +, for, if, [, $, { ...)

Note: the backtick (`), lets you refer to functions or
variables that have otherwise reserved or illegal names:
e.g. x + y is the same as `+`(x, y)

Lexical scoping
What is Lexical Scoping?

Looks up value of a symbol. (See "Enclosing
Environment" in the "Environment" section.)
•	 findGlobals() # lists all the external dependencies of a

function

f <- function() x + 1
codetools::findGlobals(f)
> '+' 'x'

environment(f) <- emptyenv()
f()

error in f(): could not find function “+” *

* This doesn’t work because R relies on lexical scoping
to find everything, even the + operator. It’s never
possible to make a function completely self-contained
because you must always rely on functions defined in
base R or other packages.

Function arguments

When calling a function you can specify arguments by
position, by complete name, or by partial name.
Arguments are matched first by exact name (perfect
matching), then by prefix matching, and finally by position.
•	 Function arguments are passed by reference and

copied on modify.
•	 You can determine if an argument was supplied or not

with the missing() function.

•	 You can also create infix functions where the function
name comes in between its arguments, like + or -.

•	 All user-created infix functions must start and end
with %.
`%+%` <- function(a, b) paste0(a, b)
'new' %+% 'string'

•	 Useful way of providing a default value in case the
output of another function is NULL:
`%||%` <- function(a, b) if (!is.
null(a)) a else b
function_that_might_return_null() %||%
default value

Replacement functions
•	 Act like they modify their arguments in place, and

have the special name xxx <-
•	 They typically have two arguments (x and value),

although they can have more, and they must return
the modified object.
`second<-` <- function(x, value) {
 x[2] <- value
 x
}
x <- 1:10
second(x) <- 5L

•	 I say they "act" like they modify their arguments in
place, because they actually create a modified copy.

•	 We can see that by using pryr::address() to find
the memory address of the underlying object.

2.	 Class: represents the object’s abstract type;
•	 ‘type’ of the object from R’s object-oriented

programming point of view
•	 Access with class()

 typeof() class()

strings or vector of strings character character

numbers or vector of numbers numeric numeric

list list list

data.frame* list data.frame

* Internally, data.frame is a list of equal-length vectors.

1d (vectors: atomic vector and list)

•	 Use is.atomic() || is.list() to test if an object
is actually a vector, not is.vector().

Type typeof() what it is

Length length() how many elements

Attributes attributes() additonal arbitrary metadata

Factors
•	 Factors are built on top of integer vectors using two

attributes :
class(x) -> 'factor'

levels(x) # defines the set of allowed values

•	 While factors look (and often behave) like character
vectors, they are actually integers. Be careful when
treating them like strings.

•	 Factors are useful when you know the possible
values a variable may take, even if you don’t see all
values in a given dataset.

•	 Most data loading functions in R automatically
convert character vectors to factors, use the
argument stringsAsFactors = FALSE to suppress
this behavior.

Attributes
•	 All objects can have arbitrary additional attributes.
•	 Attributes can be accessed individually with attr() or

all at once (as a list) with attributes().
attr(v1, 'attr1') <- 'my vector'

•	 By default, most attributes are lost when modifying a
vector. The only attributes not lost are the three most
important:

Names a character vector giving
each element a name names(x)

Dimensions used to turn vectors into
matrices and arrays dim(x)

Class used to implement the S3
object system class(x)

Data Structures

i <- function(a, b) {
 missing(a) -> # return true or false
}

•	 By default, R function arguments are lazy -- they're
only evaluated if they're actually used
f <- function(x) {
 10
}
f(stop('This is an error!')) -> 10

However, since x is not used. stop("This is an
error!") never get evaluated.

•	 Default arguments are evaluated inside the function.
This means that if the expression depends on the
current environment the results will differ depending
on whether you use the default value or explicitly
provide one:
f <- function(x = ls()) {
 a <- 1
 x
}

f() -> 'a' 'x' ls() evaluated inside f

f(ls()) ls() evaluated in global environment

Return values
•	 The last expression evaluated in a function becomes

the return value, the result of invoking the function.
•	 Only use explicit return() for when you are

returning early, such as for an error.
•	 Functions can return only a single object. But this

is not a limitation because you can return a list
containing any number of objects.

•	 Functions can return invisible values, which are not
printed out by default when you call the function.
f1 <- function() 1
f2 <- function() invisible(1)

•	 The most common function that returns invisibly is <-

Primitive functions
•	 There is one exception to the rule that functions

have three components.
•	 Primitive functions, like sum(), call C code directly

with .Primitive() and contain no R code.
•	 Therefore their formals(), body(), and environment()

are all NULL:
sum : function (..., na.rm = FALSE)
.Primitive('sum')

•	 Primitive functions are only found in the base
package, and since they operate at a low level, they
can be more efficient.

Infix functions
•	 Most functions in R are ‘prefix’ operators: the name

of the function comes before the arguments.

Subsetting (operators: [, [[, $)
Examples
1.	 Lookup tables (character subsetting)

Character matching provides a powerful way to make
lookup tables.
x <- c('m', 'f', 'u', 'f', 'f', 'm', 'm')
lookup <- c(m = 'Male', f = 'Female', u = NA)

lookup[x]
> m f u f f m m
> 'Male' 'Female' NA 'Female' 'Female' 'Male' 'Male'
unname(lookup[x])
> 'Male' 'Female' NA 'Female' 'Female' 'Male' 'Male'

2.	 Matching and merging by hand
(integer subsetting)
Lookup table which has multiple columns of
information.
grades <- c(1, 2, 2, 3, 1)
info <- data.frame(
 grade = 3:1,
 desc = c('Excellent', 'Good', 'Poor'),
 fail = c(F, F, T)
)

First method :
id <- match(grades, info$grade)
info[id,]

Second method :
rownames(info) <- info$grade
info[as.character(grades),]

•	 If you have multiple columns to match on, you’ll
need to first collapse them to a single column (with
interaction(), paste(), or plyr::id()).

•	 You can also use merge() or plyr::join(), which
do the same thing for you.

3.	 Expanding aggregated counts
(integer subsetting)
•	 Sometimes you get a data frame where identical

rows have been collapsed into one and a count
column has been added.

•	 rep() and integer subsetting make it easy to
uncollapse the data by subsetting with a repeated
row index: rep(x, y)

•	 rep replicates the values in x, y times.

df1$countCol is c(3, 5, 1)
rep(1:nrow(df1), df1$countCol)

> 1 1 1 2 2 2 2 2 3

4.	 Removing columns from data frames
(character subsetting)
There are two ways to remove columns from a data
frame.

Set individual columns to
NULL df1$col3 <- NULL

Subset to return only the
columns you want

df1[c('col1',
'col2')]

5.	 Selecting rows based on a condition
(logical subsetting)
•	 Logical subsetting is probably the most commonly

used technique for extracting rows out of a data
frame.
df1[df1$col1 == 5 & df1$col2 == 4,]

•	 Remember to use the vector boolean operators &
and |, not the short-circuiting scalar operators &&
and || which are more useful inside if statements.

•	 subset() is a specialised shorthand function for
subsetting data frames, and saves some typing
because you don't need to repeat the name of the
data frame.
subset(df1, col1 == 5 & col2 == 4)

Boolean algebra vs. sets
(logical & integer subsetting)
•	 It's useful to be aware of the natural equivalence

between set operations (integer subsetting) and
boolean algebra (logical subsetting).

•	 Using set operations is more effective when:
»» You want to find the first (or last) TRUE.
»» You have very few TRUEs and very many
FALSEs; a set representation may be faster and
require less storage.

•	 which() allows you to convert a boolean
representation to an integer representation. There’s
no reverse operation in base R.

which(c(T, F, T F)) -> 1 3
returns the index of the true*

* The integer representation length is always <=
boolean representation length.

•	 When first learning subsetting, a common mistake is
to use x[which(y)] instead of x[y].

•	 Here the which() achieves nothing, it switches from
logical to integer subsetting but the result will be
exactly the same.

•	 Also beware that x[-which(y)] is not equivalent
to x[!y]. If y is all FALSE, which(y) will be
integer(0) and -integer(0) is still integer(0),
so you’ll get no values, instead of all values.

•	 In general, avoid switching from logical to integer
subsetting unless you want, for example, the first or
last TRUE value.

Simplifying vs. preserving subsetting
•	 Simplifying subsetting returns the simplest

possible data structure that can represent the output.
•	 Preserving subsetting keeps the structure of the

output the same as the input.

Simplifying* Preserving

Vector x[[1]] x[1]

List x[[1]] x[1]

Factor x[1:4, drop = T] x[1:4]

Array x[1,] or x[, 1] x[1, , drop = F] or
x[, 1, drop = F]

Data frame x[, 1] or x[[1]] x[, 1, drop = F]
or x[1]

•	 When you use drop = FALSE, it's preserving.
•	 Omitting drop = FALSE when subsetting matrices

and data frames is one of the most common sources
of programming errors.

•	 [[is similar to [, except it can only return a single
value and it allows you to pull pieces out of a list.

* Simplifying behavior varies slightly between different
data types:

•	 Atomic Vector: x[[1]] is the same as x[1].
•	 List: [] always returns a list, to get the contents use

[[]].
•	 Factor: drops any unused levels but it remains a

factor class.
•	 Matrix or array: if any of the dimensions has

length 1, drops that dimension.
•	 Data.frame is similar, if output is a single column,

it returns a vector instead of a data frame.

Data.frames subsetting

•	 Data frames possess the characteristics of
both lists and matrices. If you subset with a
single vector, they behave like lists; if you subset with
two vectors, they behave like matrices.

List Subsetting df1[c('col1', 'col2')]

Matrix Subsetting df1[, c('col1', 'col2')]

The subsetting results are the same in this example.

•	 Single column subsetting: matrix subsetting
simplifies by default, list subsetting does not.

str(df1[, 'col1']) -> int [1:3]

the result is a vector

str(df1['col1']) -> 'data.frame'
the result remains a data frame of 1 column

Subsetting returns a copy of the original
data, NOT copy-on-modified.

Out of Bounds
•	 [and [[differ slightly in their behavior when the index

is out of bounds (OOB).
•	 For example, when you try to extract the fifth element

of a length four vector, aka OOB x[5] -> NA, or
subset a vector with NA or NULL: x[NULL] -> x[0]

Operator Index Atomic List
[OOB NA list(NULL)
[NA_real_ NA list(NULL)
[NULL x[0] list(NULL)
[[OOB Error Error
[[NA_real_ Error NULL
[[NULL Error Error

•	 If the input vector is named, then the names of OOB,
missing, or NULL components will be "<NA>".

$ Subsetting Operator
•	 $ is a useful shorthand for [[combined with

character subsetting:

x$y is equivalent to x[['y', exact = FALSE]]

•	 One common mistake with $ is to try and use it when
you have the name of a column stored in a variable:
var <- 'cyl'
x$var
doesn't work, translated to x[['var']]
Instead use x[[var]]

•	 There's one important difference between $ and [[,
$ does partial matching, [[does not:
x <- list(abc = 1)
x$a -> 1 # since "exact = FALSE"
x[['a']] -> # would be an error

Subsetting with Assignment
•	 All subsetting operators can be combined with

assignment to modify selected values of the input
vector.

•	 Subsetting with nothing can be useful in conjunction
with assignment because it will preserve the original
object class and structure.
df1[] <- lapply(df1, as.integer)
df1 will remain as a data frame

df1 <- lapply(df1, as.integer)
df1 will become a list

Debugging, condition handling, & defensive programming Object Oriented (OO) Field Guide

Created by Arianne Colton and Sean Chen
data.scientist.info@gmail.com

Based on content from
“Advanced R” by Hadley Wickham

Updated: January 15, 2016

Debugging
Use traceback() and browser(), and interactive tools
in RStudio:
•	 RStudio's error inspector or traceback() which list

the sequence of calls that lead to the error.
•	 RStudio's breakpoints or browser() which open an

interactive debug session at an arbitrary location in
the code.

•	 RStudio's "Rerun with Debug" tool or
options(error = browser)* which open an
interactive debug session where the error occurred.

* There are two other useful functions that you can use
with the error option:
1.	 Recover is a step up from browser, as it allows you

to enter the environment of any of the calls in the call
stack.
This is useful because often the root cause of the
error is a number of calls back.

2.	 dump.frames is an equivalent to recover for non-
interactive code. It creates a last.dump.rda file in
the current working directory.
Then, in a later interactive R session, you load that
file, and use debugger() to enter an interactive
debugger with the same interface as recover(). This
allows interactive debugging of batch code.
In batch R process ----

dump_and_quit <- function() {

 # Save debugging info to file last.dump.rda
 dump.frames(to.file = TRUE)

 # Quit R with error status
 q(status = 1)
}
options(error = dump_and_quit)

In a later interactive session ----

load("last.dump.rda")
debugger()

Condition handling (of expected errors)

1.	 Communicating potential problems to the
user is the job of conditions: errors, warnings, and
messages:

•	 Fatal errors are raised by stop() and force all
execution to terminate. Errors are used when there
is no way for a function to continue.

•	 Warnings are generated by warning() and are used
to display potential problems, such as when some
elements of a vectorised input are invalid.

•	 Messages are generated by message() and
are used to give informative output in a way

•	 To see if an object is a pure base type, (i.e., it
doesn't also have S3, S4, or RC behavior), check
that is.object(x) returns FALSE.

S3

•	 S3 is R's first and simplest OO system. It is the only
OO system used in the base and stats package.

•	 In S3, methods belong to functions, called generic
functions, or generics for short. S3 methods do not
belong to objects or classes.

•	 Given a class, the job of an S3 generic is to call the
right S3 method. You can recognise S3 methods by
their names, which look like generic.class().

For example, the Date method for the mean()
generic is called mean.Date()

This is the reason that most modern style guides
discourage the use of . in function names, it makes
them look like S3 methods.

•	 See all methods that belong to a generic :

methods('mean')

#> mean.Date
#> mean.default
#> mean.difftime

•	 List all generics that have a method for a given
class :

methods(class = 'Date')

•	 S3 objects are usually built on top of lists, or atomic
vectors with attributes. Factor and data frame are
S3 class.

Check if an object is a
S3 object

is.object(x) & !isS4(x) or
pryr::otype()

Check if inherits from a
specific class inherits(x, 'classname')

Determine class of any
object class(x)

Object Oriented Systems

R has three object oriented systems (plus the base types)
1.	 S3 is a very casual system. It has no formal definition

of classes. S3 implements a style of OO programming
called generic-function OO.

•	 Generic-function OO - a special type of
function called a generic function decides which
method to call.

Example: drawRect(canvas, 'blue')

Langauge: R

•	 Message-passing OO - messages (methods)
are sent to objects and the object determines which
function to call.

Example: canvas.drawRect('blue')

Langauge: Java, C++, and C#

2.	 S4 works similarly to S3, but is more formal. There are
two major differences to S3.
•	 S4 has formal class definitions, which describe the

representation and inheritance for each class, and
has special helper functions for defining generics
and methods.

•	 S4 also has multiple dispatch, which means that
generic functions can pick methods based on the
class of any number of arguments, not just one.

3.	 Reference classes, called RC for short, are quite
different from S3 and S4.

•	 RC implements message-passing OO, so methods
belong to classes, not functions.

•	 $ is used to separate objects and methods, so
method calls look like canvas$drawRect('blue').

C Structure

•	 Underlying every R object is a C
structure (or struct) that describes how
that object is stored in memory.

•	 The struct includes the contents of the object, the
information needed for memory management and a
type.

typeof() # determines an object's base type

•	 The "Data structures" section explains the most
common base types (atomic vectors and lists), but
base types also encompass functions, environments,
and other more exotic objects likes names, calls, and
promises.

that can easily be suppressed by the user using
?suppressMessages().

2.	 Handling conditions programmatically:
•	 try() gives you the ability to continue execution

even when an error occurs.
•	 tryCatch() lets you specify handler functions that

control what happens when a condition is signaled.

result = tryCatch(code,
error = function(c) "error",
warning = function(c) "warning",
message = function(c) "message"

)

Use conditionMessage(c) or c$message to
extract the message associated with the original
error.

•	 You can also capture the output of the try() and
tryCatch() functions.
If successful, it will be the last result evaluated in the
block, just like a function.
If unsuccessful it will be an invisible object of class
"try-error".

3.	 Custom signal classes:
•	 One of the challenges of error handling in R is that

most functions just call stop() with a string.
•	 Since conditions are S3 classes, the solution is to

define your own classes if you want to distinguish
different types of error.

•	 Each condition signalling function, stop(),
warning(), and message(), can be given either a
list of strings, or a custom S3 condition object.

Defensive Programming
The basic principle of defensive programming is to "fail
fast", to raise an error as soon as something goes
wrong.
In R, this takes three particular forms:
1.	 Checking that inputs are correct using stopifnot(),

the 'assertthat' package, or simple if statements and
stop()

2.	 Avoiding non-standard evaluation like subset(),
transform(), and with().

These functions save time when used interactively,
but because they make assumptions to reduce
typing, when they fail, they often fail with
uninformative error messages.

3.	 Avoiding functions that can return different types
of output. The two biggest offenders are [and
sapply().

Note: Whenever subsetting a data frame in a
function, you should always use drop = FALSE

