
General

Data Structures

Manipulating Strings

R Programming Cheat Sheet
just the basics

Created By: Arianne Colton and Sean Chen

Putting
Together
Strings

paste('string1', 'string2', sep
= '/')
separator ('sep') is a space by default
paste(c('1', '2'), collapse =
'/')
returns '1/2'

Split String
stringr::str_split(string = v1,
pattern = '-')

returns a list
Get Substring stringr::str_sub(string = v1,

start = 1, end = 3)

Match String

isJohnFound <- stringr::str_
detect(string = df1$col1,
pattern = ignore.case('John'))

returns True/False if John was found
df1[isJohnFound, c('col1',
...)]

Data Types

•	 R version 3.0 and greater adds support for 64 bit
integers

•	 R is case sensitive
•	 R index starts from 1

HELP
help(functionName) or ?functionName

Help Home Page help.start()

Special Character Help help('[')

Search Help help.search(..)or ??..
Search Function - with
Partial Name apropos('mea')

See Example(s) example(topic)

Objects in current environment

Display Object Name objects() or ls()
Remove Object rm(object1, object2,..)

Notes:
1.	 .name starting with a period are accessible but

invisible, so they will not be found by ‘ls’

2.	 To guarantee memory removal, use ‘gc’, releasing
unused memory to the OS. R performs automatic ‘gc’
periodically

Symbol Name Environment
•	 If multiple packages use the same function name the

function that the package loaded the last will get called.

•	 To avoid this precede the function with the name of the
package. e.g. packageName::functionName(..)

Library
Only trust reliable R packages i.e., 'ggplot2' for plotting,
'sp' for dealing spatial data, 'reshape2', 'survival', etc.

Load Package library(packageName)or
require(packageName)

Unload Package detach(packageName)

Note: require() returns the status(True/False)

Vector
•	 Group of elements of the SAME type
•	 R is a vectorized language, operations are applied to

each element of the vector automatically
•	 R has no concept of column vectors or row vectors
•	 Special vectors: letters and LETTERS, that contain

lower-case and upper-case letters
Create Vector v1 <- c(1, 2, 3)

Get Length length(v1)

Check if All or Any is True all(v1); any(v1)

Integer Indexing v1[1:3]; v1[c(1,6)]

Boolean Indexing v1[is.na(v1)] <- 0

Naming c(first = 'a', ..)or
names(v1) <- c('first', ..)

Factor
•	 as.factor(v1) gets you the levels which is the

number of unique values
•	 Factors can reduce the size of a variable because they

only store unique values, but could be buggy if not
used properly

list
Store any number of items of ANY type
Create List list1 <- list(first = 'a', ...)

Create Empty List vector(mode = 'list', length
= 3)

Get Element list1[[1]] or list1[['first']]
Append Using
Numeric Index list1[[6]] <- 2

Append Using Name list1[['newElement']] <- 2

Note: repeatedly appending to list, vector, data.frame
etc. is expensive, it is best to create a list of a certain
size, then fill it.

data.frame
•	 Each column is a variable, each row is an observation
•	 Internally, each column is a vector
•	 idata.frame is a data structure that creates a reference

to a data.frame, therefore, no copying is performed

Create Data Frame df1 <- data.frame(col1 = v1,
col2 = v2, v3)

Dimension nrow(df1); ncol(df1); dim(df1)

Get/Set Column
Names

names(df1)
names(df1) <- c(...)

Get/Set Row
Names

rownames(df1)
rownames(df1) <- c(...)

Preview head(df1, n = 10); tail(...)
Get Data Type class(df1) # is data.frame

Index by Column(s)
df1['col1']or df1[1];†
df1[c('col1', 'col3')] or
df1[c(1, 3)]

Index by Rows and
Columns

df1[c(1, 3), 2:3] # returns data
from row 1 & 3, columns 2 to 3

† Index method: df1$col1 or df1[, 'col1'] or
df1[, 1] returns as a vector. To return single column

Check data type: class(variable)
Four Basic Data Types
1.	 Numeric - includes float/double, int, etc.

is.numeric(variable)

2.	 Character(string)
nchar(variable) # length of a character or numeric

3.	 Date/POSIXct
•	 Date: stores just a date. In numeric form, number

of days since 1/1/1970 (see below).
date1 <- as.Date('2012-06-28'),
as.numeric(date1)

•	 POSIXct: stores a date and time. In numeric
form, number of seconds since 1/1/1970.
date2 <- as.POSIXct('2012-06-28 18:00')

Note: Use 'lubridate' and 'chron' packages to work
with Dates

4.	 Logical
•	 (TRUE = 1, FALSE = 0)
•	 Use ==/!= to test equality and inequality

as.numeric(TRUE) => 1

data.frame while using single-square brackets, use
‘drop’: df1[, 'col1', drop = FALSE]

data.table
What is a data.table
•	 Extends and enhances the functionality of data.frames
Differences: data.table vs. data.frame
•	 By default data.frame turns character data into factors,

while data.table does not
•	 When you print data.frame data, all data prints to the

console, with a data.table, it intelligently prints the first
and last five rows

•	 Key Difference: Data.tables are fast because
they have an index like a database.
i.e., this search, dt1$col1 > number, does a
sequential scan (vector scan). After you create a key
for this, it will be much faster via binary search.

Create data.table from data.frame data.table(df1)

Index by Column(s)*
dt1[, 'col1', with
= FALSE] or
dt1[, list(col1)]

Show info for each data.table in
memory (i.e., size, ...) tables()

Show Keys in data.table key(dt1)
Create index for col1 and
reorder data according to col1 setkey(dt1, col1)

Use Key to Select Data dt1[c('col1Value1',
'col1Value2'),]

Multiple Key Select dt1[J('1', c('2', '3')),]

Aggregation**

dt1[, list(col1 =
mean(col1)), by =
col2]
dt1[, list(col1 =
mean(col1), col2Sum
= sum(col2)), by =
list(col3, col4)]

* Accessing columns must be done via list of actual
names, not as characters. If column names are
characters, then "with" argument should be set to
FALSE.
** Aggregate and d*ply functions will work, but built-in
aggregation functionality of data table is faster

Matrix
•	 Similar to data.frame except every element must be

the SAME type, most commonly all numerics
•	 Functions that work with data.frame should work with

matrix as well

Create Matrix matrix1 <- matrix(1:10, nrow = 5), # fills
rows 1 to 5, column 1 with 1:5, and column 2 with 6:10

Matrix
Multiplication

matrix1 %*% t(matrix2)
where t() is transpose

Array
•	 Multidimensional vector of the SAME type
•	 array1 <- array(1:12, dim = c(2, 3, 2))
•	 Using arrays is not recommended
•	 Matrices are restricted to two dimensions while array

can have any dimension

Data Munging Functions and Controls

Data

Data Reshaping

Created by Arianne Colton and Sean Chen
data.scientist.info@gmail.com

Based on content from
'R for Everyone' by Jared Lander

Updated: December 2, 2015

Rearrange

Melt Data - from
column to row

reshape2.melt(df1, id.vars =
c('col1', 'col2'), variable.
name = 'newCol1', value.name =
'newCol2')

Cast Data - from
row to column

reshape2.dcast(df1, col1 +
col2 ~ newCol1, value.var =
'newCol2')

If df1 has 3 more columns, col3 to col5, 'melting' creates
a new df that has 3 rows for each combination of col1
and col2, with the values coming from the respective col3
to col5.
Combine (mutiple sets into one)
1.	 cbind - bind by columns

data.frame from two vectors cbind(v1, v2)

data.frame combining df1 and
df2 columns cbind(df1, df2)

2.	 rbind - similar to cbind but for rows, you can assign
new column names to vectors in cbind
cbind(col1 = v1, ...)

3.	 Joins - (merge, join, data.table) using common keys
3.1 Merge
•	 by.x and by.y specify the key columns use in the

join() operation
•	 Merge can be much slower than the alternatives
merge(x = df1, y = df2, by.x = c('col1',
'col3'), by.y = c('col3', 'col6'))

3.2 Join
•	 Join in plyr() package works similar to merge but

much faster, drawback is key columns in each
table must have the same name

•	 join() has an argument for specifying left, right,
inner joins

join(x = df1, y = df2, by = c('col1',
'col3'))

3.3 data.table

dt1 <- data.table(df1, key = c('1',
'2')), dt2 <- ...‡

•	 Left Join
dt1[dt2]

‡ Data table join requires specifying the keys for the data
tables

Apply (apply, tapply, lapply, mapply)
•	 Apply - most restrictive. Must be used on a matrix, all

elements must be the same type
•	 If used on some other object, such as a data.frame, it

will be converted to a matrix first
apply(matrix1, 1 - rows or 2 - columns,
function to apply)

if rows, then pass each row as input to the function

•	 By default, computation on NA (missing data) always
returns NA, so if a matrix contains NAs, you can
ignore them (use na.rm = TRUE in the apply(..)
which doesn’t pass NAs to your function)

lapply
Applies a function to each element of a list and returns
the results as a list
sapply
Same as lapply except return the results as a vector

Note: lapply & sapply can both take a vector as input, a
vector is technically a form of list

Aggregate (SQL groupby)
•	 aggregate(formulas, data, function)

•	 Formulas: y ~ x, y represents a variable that we
want to make a calculation on, x represents one or
more variables we want to group the calculation by

•	 Can only use one function in aggregate(). To apply
more than one function, use the plyr() package

In the example below diamonds is a data.frame; price,
cut, color etc. are columns of diamonds.
aggregate(price ~ cut, diamonds, mean)
get the average price of different cuts for the diamonds
aggregate(price ~ cut + color, diamonds,
mean) # group by cut and color
aggregate(cbind(price, carat) ~ cut,
diamonds, mean) # get the average price and average
carat of different cuts

Plyr ('split-apply-combine')
•	 ddply(), llply(), ldply(), etc. (1st letter = the type of

input, 2nd = the type of output
•	 plyr can be slow, most of the functionality in plyr

can be accomplished using base function or other
packages, but plyr is easier to use

ddply
Takes a data.frame, splits it according to some
variable(s), performs a desired action on it and returns a
data.frame

llply
•	 Can use this instead of lapply
•	 For sapply, can use laply (‘a’ is array/vector/matrix),

however, laply result does not include the names.

DPLYR (for data.frame ONLY)
•	 Basic functions: filter(), slice(), arrange(), select(),

rename(), distinct(), mutate(), summarise(),

group_by(), sample_n()
•	 Chain functions

df1 %>% group_by(year, month) %>%
select(col1, col2) %>% summarise(col1mean
= mean(col1))

•	 Much faster than plyr, with four types of easy-to-use
joins (inner, left, semi, anti)

•	 Abstracts the way data is stored so you can work with
data frames, data tables, and remote databases with
the same set of functions

Helper functions
each() - supply multiple functions to a function like aggregate
aggregate(price ~ cut, diamonds, each(mean,
median))

Load Data from CSV
•	 Read csv

read.table(file = url or filepath, header =
TRUE, sep = ',')

•	 “stringAsFactors” argument defaults to TRUE, set it to
FALSE to prevent converting columns to factors. This
saves computation time and maintains character data

•	 Other useful arguments are "quote" and "colClasses",
specifying the character used for enclosing cells and
the data type for each column.

•	 If cell separator has been used inside a cell, then use
read.csv2() or read delim2() instead of read.
table()

Database
Connect to
Database db1 <- RODBC::odbcConnect('conStr')

Query
Database

df1 <- RODBC::sqlQuery(db1, 'SELECT
..', stringAsFactors = FALSE)

Close
Connection RODBC::odbcClose(db1)

•	 Only one connection may be open at a time. The
connection automatically closes if R closes or another
connection is opened.

•	 If table name has space, use [] to surround the table
name in the SQL string.

•	 which() in R is similar to ‘where’ in SQL
Included Data
R and some packages come with data included.
List Available Datasets data()
List Available Datasets in
a Specific Package

data(package =
'ggplot2')

Missing Data (NA and NULL)
NULL is not missing, it’s nothingness. NULL is atomical
and cannot exist within a vector. If used inside a vector, it
simply disappears.
Check Missing Data is.na()
Avoid Using is.null()

Graphics

Default basic graphic
hist(df1$col1, main = 'title', xlab = 'x
axis label')

plot(col2 ~ col1, data = df1),
aka y ~ x or plot(x, y)

lattice and ggplot2 (more popular)
•	 Initialize the object and add layers (points, lines,

histograms) using +, map variable in the data to an
axis or aesthetic using ‘aes’
ggplot(data = df1) + geom_histogram(aes(x
= col1))

•	 Normalized histogram (pdf, not relative frequency
histogram)
ggplot(data = df1) + geom_density(aes(x =
col1), fill = 'grey50')

Create Function say_hello <- function(first,
last = 'hola') { }

Call Function say_hello(first = 'hello')

•	 R automatically returns the value of the last line of
code in a function. This is bad practice. Use return()
explicitly instead.

•	 do.call() - specify the name of a function either as
string (i.e. 'mean') or as object (i.e. mean) and provide
arguments as a list.

do.call(mean, args = list(first = '1st'))

if /else /else if /switch
if { } else ifelse

Works with Vectorized Argument No Yes
Most Efficient for Non-Vectorized Argument Yes No
Works with NA * No Yes
Use &&, || **† Yes No
Use &, | ***† No Yes

* NA == 1 result is NA, thus if won’t work, it’ll be an
error. For ifelse, NA will return instead
** &&, || is best used in if, since it only compares the
first element of vector from each side
*** &, | is necessary for ifelse, as it compares every
element of vector from each side
† &&, || are similar to if in that they don’t work with
vectors, where ifelse, &, | work with vectors

•	 Similar to C++/Java, for &, |, both sides of operator
are always checked. For &&, ||, if left side fails, no
need to check the right side.

•	 } else, else must be on the same line as }

